
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Programming Large Language Models with Algebraic

Effect Handlers and the Selection Monad

Anonymous Author(s)

Abstract

We present Pangolin, a programming language that treats
large language model (LLM) interactions as first-class alge-
braic effects, enabling systematic composition and control
over complex AI systems. By modeling non-deterministic
choices of LLM results with selection monads, Pangolin al-
lows programmers to abstract over multiple execution paths
and automatically select outcomes based on downstream
metrics. Pangolin makes it possible to design and manage
LLM-centric pipelines with the clarity and reliability of con-
ventional programming languages.

1 Introduction

The standard way of interacting with large language models
(LLMs) is to treat LLMs as a black box function with token
inputs and outputs. This abstraction naturally arises from
the autoregressive nature of LLMs, which generate text by
predicting one token at a time based on the preceding con-
text. While this abstraction suffices for simple single-turn
interactions, modern AI applications increasingly rely on
compound AI systems that orchestrate multiple LLM calls,
integrate external tools, and maintain complex state across
interactions.

To address these challenges, numerous frameworks have
emerged, such as DSPy [3], Pydantic AI [8], and LangChain
[1]. These frameworks provide better abstractions for build-
ing compound AI systems, typically offering prompt tem-
plating, output parsing, LLM call composition, and retry
logic. All the abstractions provide more pleasant ways to
interact with LLMs through declaratively defined language
programs, where language model interactions are defined
programmatically as deeply embedded modules. However,
the abstraction comes at a cost: fine-grained control over the
generation process is sacrificed for ease of use. Now, even the
compound AI system becomes a black box, with no visibility
into intermediate results and how the declarative program
being compiled to the token-in and token-out interactions
with large language models.

In this paper, we propose Pangolin, a novel programming
model to interact with LLMs through algebraic effects and
handlers with selection monads. Pangolin’s formalization
maintains a clean separation between what the language
programs do through algebraic effect operations and how it
is achieved through compositional effect handlers and the
selection monad [2, 4].
Pangolin leverages the well-established theory of alge-

braic effects [5] and handlers [6] to provide a principled way

for composing compound AI systems. Algebraic effects offer
a modular approach to computational effects, where effectful
operations are declared separately from their interpretation,
enabling the same program to be executed with different
strategies by swapping handlers. This separation is partic-
ularly powerful for LLM programming: the same language
model interaction can be interpreted by various handlers
to achieve different execution strategies—a simple handler
might directly call OpenAI’s API, while a non-deterministic
handler could generate multiple candidates in parallel for
test-time scaling, with the same, or even different model
providers.

In addition, we integrate the selection monad in Pangolin
to capture the inherently non-deterministic nature of lan-
guage model generation and enable principled exploration of
the output space with reward. The selection monad extends
traditional nondeterministic effects by associating scores
with each outcome, allowing programs to reason about the
quality of different execution paths before committing to a
final output.

Building on this foundation, Pangolin offers several key
advantages over existing approaches. First, Pangolin pro-
vides fine-grained control over the generation process while
maintaining high-level abstractions. Unlike traditional frame-
works that hide the complexity behind opaque interfaces,
Pangolin exposes intermediate results and decision points
through the algebraic effect system, enabling developers to
inspect, modify, and optimize the execution flow. Second,
Pangolin establishes a potential formal foundation for rea-
soning about compound AI systems through its types and
semantics. Third, Pangolin’s algebraic structure makes it
well-suited as a code generation target for LLM models. The
explicit separation between effect operations and handlers
provides LLMs with a structured framework for generating
compound AI systems, rather than navigating the complex
callback chains and implicit dependencies common in tradi-
tional frameworks. When generating Pangolin programs,
LLMs can compose simple effect operations following the
semantic rules, reducing the occurrence of subtle bugs that
often appear in LLM-generated framework code.

Contributions. We sketch the design of Pangolin, a pro-
gramming language for compound AI systems based on alge-
braic effects and handlers integrated with selection monads.
We demonstrate several examples of interesting language
model programs in Pangolin, including test-time scaling
techniques (best-of-n sampling) and different retry strate-
gies.

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

2 Example Pangolin Programs

We introduce Pangolin and explain its features with several
examples. Figure 1 is a simple LLM program that performs
sentiment analysis. We define a function emotion_classifier

that takes a sentence str as input and returns a sentiment
str as output.

1 let emotion_classifier = 𝜆 sentence.
2 let emotion_spec = specification {
3 input = { sentence: str },
4 output = { sentiment: str }
5 };
6 let input = { sentence = sentence };
7 let result = LM(emotion_spec , input);
8 result.sentiment
9 let result = emotion_classifier("I love you!")

Figure 1. Pangolin program does sentiment analysis on a
sentence.

The function firstly specifies the protocol of interacting
with the LLM, using Pangolin construct specification. Rather
than treating LLM calls as opaque string-to-string functions,
specifications provide typed interfaces that declare the ex-
pected input structure and promised output format. Spec-
ification type is a more compact representation of DSPy’s
signature system [3], enabling declarative interactions with
LLMs. The specification type can also be easily extended to
include: prompt templates, demonstrations, traces, and even
models and weights.
Then, the function emotion_classifier prepares the input,

invokes the LLM, and extracts the output. Here, LM is a Pan-
golin built-in algebraic effect, representing an abstract effect
operation that is not yet interpreted. To execute the program,
we need an effect handler that defines the semantics (i.e., the
actual action) of this operation. Installing different effect han-
dlers effectively gives the same program different behaviors
at runtime, separating concerns of what and how, and bring-
ing flexibility and modularity in constructing LLM-programs
with complex interactions.

Figure 2 defines the most naive LM handler. The handler
intercepts the LM operation with its arguments and continu-
ation k. In the handler, we use primitive write that formats
specifications into prompts (of type string), call the primitive
LM function primlm: string -> string, parse results back to
a typed record using primitive read, and resume with the
parsed output by invoking the continuation k.

2.1 Test-time Scaling

A common strategy to improve LLM inference is through
test-time scaling [10]. To implement a simple parallel-sampled
test-time scaling for emotion_classifier in Figure 1, we can
install a different handler for it. In parallel_lm_handler(n) (Fig-
ure 3), we generate n samples, apply the continuation to each

1 let naive_lm_handler = {
2 | LM(spec , input; k) ↦→
3 let prompt = write[spec](input);
4 let raw_result = primlm(prompt);
5 let output = read[spec.output ]( raw_result);
6 k(output)
7 };
8

9 handle emotion_classifier("I love you!")
10 with naive_lm_handler

Figure 2. Pangolin programwith a naive LM handler, which
formats specifications into prompts, calls the primitive LM
function, parses results back to typed records, and continues
with the parsed output.

1 let parallel_lm_handler(n) = {
2 | return x ↦→ [x]
3 | LM(spec , input; k) ↦→
4 let prompt = write[spec](input);
5 let raw_results = map(
6 𝜆 i. primlm(prompt), [1..n]
7 );
8 let parsed_outputs = map(
9 𝜆 result. read[spec.output ]( result),
10 raw_results
11 );
12 fold(++, [], map(k, parsed_outputs))
13 };
14

15 handle emotion_classifier("I love you!")
16 with parallel_lm_handler (16)

Figure 3. Pangolin program with test-time scaling handler
that generates n parallel samples by calling the language
model multiple times, applies the continuation to each indi-
vidual result, and concatenates all results together.

of the samples, and combine the results into a list. Note that
here, we need to provide the return clause return x ↦→ [x].
In this way, the final results of each continuation k will be a
singleton list, which can be combined into a final result list.

The parallel LM handler here models a special form of the
nondeterminism effect [7], which explores the program with
multiple choices (paths) simultaneously. Beyond test-time
scaling, readers can imagine that this becomes particularly
handy when the language program explores different LM
specifications as well. For example, another LM handler can
call the same program with different language models (e.g.,
with GPT 4.1 and Claude-Sonnet-4 ) through invoking the
continuation k with corresponding specifications.

2.2 Best-of-n Sampling

To select a single result from the list, we utilize the selec-
tion monad with the choose operation (Figure 4). Instead of

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Programming Large Language Models with Algebraic Effect Handlers and the Selection Monad

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

1 let best_of_n_handler(n) = {
2 | LM(spec , input; k) ↦→
3 // same as before
4 ...
5 let parsed_outputs = ...
6 let best = choose(parsed_outputs);
7 k(best)
8 | choose(xs; k; k𝑠 ) ↦→
9 let scores = map k𝑠 xs;
10 let best_idx = argmax(scores);
11 k(xs[best_idx ])
12 };
13

14 handle
15 let res = emotion_classifier("I love you!");
16 score confidence_score(res)
17 with best_of_n_handler (16)

Figure 4. Pangolin program with best-of-n selection that
generates n samples in the LM handler, uses choose to se-
lect among them based on scoring, and returns the highest-
scoring result.

returning the list from parallel-sampled language model out-
puts, LM handler calls choose at the end with a list of options.

The choose handler applies the special score continuation k𝑠

to the list of options, which automatically collects the score
in the rest of the program for each option and returns the
sample with the highest score. The notion of score can be
customized by the user, for example, Figure 4 rates the out-
put using confidence_score. The underlying implementation
can be as simple as string matching, or more complex, like
using LLM as a judge or invoking some external services for
feedback. Finally, LM resumes the program execution with
the highest-scoring sample.

2.3 Retry with Assertion

LLM programs are still prone to failure, e.g., when the
output fails to meet a required format or constraint. To guard
against such issues, users can insert assert statements to
specify output expectations. Unlike traditional assertions
which halt execution upon failure, Pangolin ’s assertions
are algebraic operations that can instead be reinterpreted.
In addition, Pangolin’s assertion is a more general form of
DSPy assertions [9], which are interpreted with only one
retry mechanism.
Figure 5 demonstrates a primitive use of assert to imple-

ment a retry mechanism, when the condition pred is not
satisfied. To capture the context to backtrack to, Pangolin
introduces a retry block. Each assert’s handler will have
access to the most immediate retry’s context as retry_ctx,
which allows backtracking and accessing the last invoked
argument of this block.
The handler implements backtracking by conditioning

on the value of pred or the number of times the retry block

1 let naive_retry_handler(n) = {
2 | assert(pred , feedback; k; retry_ctx) ↦→
3 let n_retry = retry_ctx.n_retry;
4 if pred or retry >= n then k()
5 else retry_ctx(feedback , n_retry +1)
6 };
7

8 handle retry(feedback = "", n_retry = 0) {
9 let res = emotion_classifier("I love you!");
10 assert(
11 res ∈ ["positive", "negative", "neutral"],
12 "Expected positive , negative , or neutral"
13 );
14 } with naive_retry_handler (3) | naive_lm_handler

Figure 5. Pangolin program with naive retry handler that
retries the entire block on assertion failure by incrementing
the retry counter and calling the retry continuation. We
use handle e with ℎ1| ℎ2 to denote the composition of two
handlers (i.e., handle handle e with ℎ1 with ℎ2).

was executed. If pred satisfies the check or when we exhaust
the backtracking budget n, the handler continues normal
execution flow by calling the continuation. Otherwise, we
backtrack to the retry block with assertion feedback and
increment the retry counter by 1.
While naive_retry_handler implements the backtracking

mechanism to improve LM generation quality, we can easily
alter the behavior of assert by installing a different handler.
For example, the following handler implements conventional
assertion handling that halts the execution when failing:

1 let normal_assert_handler = {
2 | assert(pred , feedback; k; retry_ctx) ↦→
3 if pred then k()
4 else halt(feedback);
5 };

2.4 Retry with the Highest Score

We can also implement assert as intermediate reward sig-
nals for more efficient sampling (Figure 6). The handler im-
plementation is as simple as interpreting pred with score.
Then, the selection monad is able to collect these assertion
rewards along with the program’s execution, returning sam-
ples that pass the most number of assertions (or achieve the
highest score, if we allow pred to be arbitrary floating-point
numbers).

3 Conclusion and Future Work

We present a programming language Pangolin to interact
with language models programmatically. We also showcase
programs in Pangolin with flexible handlers for various
language program behaviors.

A future work is to develop the formal semantics of Pan-
golin and a type system for it. Pangolin also needs addi-
tional features to become useful. In the previous examples,

3



331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

1 let choose_handler = {
2 | assert(pred , feedback; k; retry_ctx) ↦→
3 score(pred);
4 k()
5 | choose(xs; k; k_s) ↦→
6 let scores = map k_s xs;
7 let best_idx = argmax(scores);
8 k(xs[best_idx ])
9 };
10

11 handle retry(feedback = "", n_retry = 0) {
12 let 𝑟𝑒𝑠1 = choose(emotion_classifier("I love

you!"));
13 assert(
14 res ∈ ["positive", "negative", "neutral"],
15 "Expected positive , negative , or neutral"
16 );
17 assert(len(res) < 10;
18 "Sentiment should be short.")
19 } with choose_handler | parallel_lm_handler (5)

Figure 6.We can easily handle a similar program to Figure 5
with a choose handler to use assertion as score signals, and
use the selection monad to pick the best one. This works
with an arbitrary number of assertions as well.

we presented a simplified LM specification and handler. In
reality, the specification needs actual language model con-
figurations to properly set up primlm before invoking the
right model with the correct parameters. Another practi-
cal way to improve Pangolin is by handling asynchronous
language model operations. As LLM inferences are often
time-consuming, a practical framework often streamlines
large-scale LM program evaluation/serving through async
LM calls.

References

[1] Harrison Chase. 2022. LangChain: Building applications with LLMs
through composability. https://github.com/langchain-ai/langchain.
Accessed: 2025.

[2] Martín Hötzel Escardó and Paulo Oliva. 2010. Selection functions, bar
recursion and backward induction. Math. Struct. Comput. Sci. 20, 2
(2010), 127–168. doi:10.1017/S0960129509990351

[3] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang,
Keshav Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma,
Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and
Christopher Potts. 2023. DSPy: Compiling Declarative Language
Model Calls into Self-Improving Pipelines. arXiv:2310.03714 [cs.CL]
https://arxiv.org/abs/2310.03714

[4] Gordon Plotkin andNingningXie. 2025. Handling the SelectionMonad.
Proc. ACM Program. Lang. 9, PLDI, Article 218 (June 2025), 25 pages.
doi:10.1145/3729321

[5] Gordon D. Plotkin and John Power. 2003. Algebraic Operations and
Generic Effects. Appl. Categorical Struct. 11, 1 (2003), 69–94.

[6] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic
Effects. Log. Methods Comput. Sci. 9, 4 (2013).

[7] Gordon D Plotkin andMatija Pretnar. 2013. Handling Algebraic Effects.
Logical Methods in Computer Science Volume 9, Issue 4 (Dec. 2013).
doi:10.2168/lmcs-9(4:23)2013

[8] Pydantic Team. 2024. Pydantic AI: Agent Framework / LLM Toolkit
for Python. https://ai.pydantic.dev. Accessed: 2025.

[9] Arnav Singhvi, Manish Shetty, Shangyin Tan, Christopher Potts,
Koushik Sen, Matei Zaharia, and Omar Khattab. 2024. DSPy Asser-
tions: Computational Constraints for Self-Refining Language Model
Pipelines. arXiv:2312.13382 [cs.CL] https://arxiv.org/abs/2312.13382

[10] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling
LLM Test-Time Compute Optimally can beMore Effective than Scaling
Model Parameters. arXiv:2408.03314 [cs.LG] https://arxiv.org/abs/
2408.03314

4

https://github.com/langchain-ai/langchain
https://doi.org/10.1017/S0960129509990351
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://doi.org/10.1145/3729321
https://doi.org/10.2168/lmcs-9(4:23)2013
https://ai.pydantic.dev
https://arxiv.org/abs/2312.13382
https://arxiv.org/abs/2312.13382
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314

	Abstract
	1 Introduction
	2 Example Pangolin Programs
	2.1 Test-time Scaling
	2.2 Best-of-n Sampling
	2.3 Retry with Assertion
	2.4 Retry with the Highest Score

	3 Conclusion and Future Work
	References

